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ABSTRACT
◥

Purpose: Between 30%–40% of patients with prostate cancer
experience disease recurrence following radical prostatectomy.
Existing clinical models for recurrence risk prediction do not
account for population-based variation in the tumor phenotype,
despite recent evidence suggesting the presence of a unique, more
aggressive prostate cancer phenotype in African American (AA)
patients. We investigated the capacity of digitally measured, pop-
ulation-specific phenotypes of the intratumoral stroma to create
improved models for prediction of recurrence following radical
prostatectomy.

Experimental Design: This study included 334 radical prosta-
tectomy patients subdivided into training (VT, n¼ 127), validation
1 (V1, n ¼ 62), and validation 2 (V2, n ¼ 145). Hematoxylin and
eosin–stained slides from resected prostates were digitized, and 242
quantitative descriptors of the intratumoral stroma were calculated
using a computational algorithm. Machine learning and elastic net

Cox regression models were constructed using VT to predict
biochemical recurrence-free survival based on these features. Per-
formance of thesemodels was assessed usingV1 andV2, both overall
and in population-specific cohorts.

Results: An AA-specific, automated stromal signature, AAstro,
was prognostic of recurrence risk in both independent validation
datasets [V1,AA: AUC ¼ 0.87, HR ¼ 4.71 (95% confidence interval
(CI), 1.65–13.4), P¼ 0.003; V2,AA: AUC¼ 0.77, HR¼ 5.7 (95% CI,
1.48–21.90), P ¼ 0.01]. AAstro outperformed clinical standard
Kattan and CAPRA-S nomograms, and the underlying stromal
descriptors were strongly associated with IHC measurements of
specific tumor biomarker expression levels.

Conclusions: Our results suggest that considering population-
specific information and stromal morphology has the potential to
substantially improve accuracy of prognosis and risk stratification
in AA patients with prostate cancer.

Introduction
Prostate cancer has the highest incidence of any cancer among

males in theUnited States (1). Surgical resection of the prostate (radical
prostatectomy) is prescribed as a curative therapy for approximately
75,000 newly diagnosed patients each year (2), while 30%–40% of

patients experience biochemical recurrence (BCR) following radical
prostatectomy (3, 4). Clinical decisions about the prescription of
adjuvant therapy are made based on estimates of the probability of
prostate cancer recurrence following surgery (5).

Increasing evidence (1) suggests that African Americans (AA)
have a higher likelihood of being diagnosed with prostate cancer
and may experience more aggressive disease. Compared with
Caucasian American (CA) males, AA men have a 1.76-fold higher
lifetime probability of developing prostate cancer, and a 2.20-fold
greater chance of disease-related death (1). Recent investigations
at the genomic, epigenomic, transcriptomic, and proteomic levels
have suggested significant differences in the biology of AA versus
CA tumors (6–9). Despite these findings, race is not considered by
current BCR prognosis tools.

Numerous studies have demonstrated a role for the stroma in the
pathogenesis of a number of cancers. These studies have indicated
changes in stromal cell phenotypes, alterations in extracellular matrix
(ECM) composition, and the presence of biomarkers similar to those
observed during wound repair (10–12). A growing number of artificial
intelligence–driven digital pathology studies have employed quanti-
tative histomorphometry (QH) to precisely analyze tumor structure
from scanned images (13). A recent study (14) found that quantitative
histomorphometric features from tumor-adjacent benign regionswere
prognostic of prostate cancer biochemical recurrence, and that com-
bining these tumor-adjacent features with tumor-specific features
resulted in increased prognostic accuracy with respect to cancer
recurrence. Despite these findings, stromal morphology is not explic-
itly considered in characterization of prostate cancer.

The objectives of this work were to evaluate whether (i) population-
specific, quantitative structural information describing the prostate
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cancer intratumoral stroma could be used to create prognostic models
for biochemical recurrence-free survival (BRFS) following radical
prostatectomy and (ii) prognostic descriptors of stromal morphology
were associated withmarkers of tumor biology. An automated compu-
tational approach was used to calculate 242 quantitative metrics of
stromal morphology. A subset of these metrics was identified as
prognostic of BRFS in three subdivisions of the 127-patient training
cohort—AAonly (VT,AA), CA only (VT,CA), andAAþCA (VT,AAþCA).
Machine learning (ML) and elastic net Cox (ENC) models were
trained using the stromal image features to predict BCR likelihood
following radical prostatectomy. These models were validated using
two independent holdout datasets V1 (n ¼ 64) and V2 (n ¼ 145).
The performance of these models was compared with current
clinical standards for postoperative risk prognosis, namely the
Kattan and CAPRA-S nomograms. The models created in this
work were found to outperform existing nomograms in both
validation datasets. Finally, IHC stains for 10 biomarkers were
obtained for a 95-patient AA subset, and expression levels were
tested for correlation with stromal morphology descriptors. Twen-
ty-six biomarker–image feature pairs had a significant association,
three of which included stromal features prognostic of BRFS. These
results suggest that there are morphologic variations specific to AA
tumors that are associated with prostate cancer aggressiveness, and
that quantitative characterization of tissue morphology that
accounts for these variations can improve BRFS estimates.

Materials and Methods
Datasets and sample preparation

A total of 334 patients with prostate cancer who underwent radical
prostatectomy were identified for inclusion in this study. A CON-
SORT-style flow diagram describing the handling of patient informa-
tion is provided in Supplementary Fig. S2. The surgical procedures and

sample preparation were conducted at three different institutions.
Resected prostates were fixed overnight in formalin, serially sectioned,
and entirely submitted in quadrants. Hematoxylin and eosin–stained
(H&E) slides were prepared using the formalin-fixed, paraffin-
embedded tissue. Each case was reviewed by a genitourinary pathol-
ogist to select a single representative slide. The slides were then
scanned using a whole-slide scanner. The images were reviewed by
a pathologist, and a single representative cancerous regionwas digitally
annotated in each image. This annotated region was used for the
quantitative histomorphometry experiments in this study. An example
annotation is shown in Fig. 1A.

The patients were divided into three cohorts: VT (training, n¼ 127),
V1 (validation 1, n¼ 62), and V2 (validation 2, n¼ 145). VT was used
for feature discovery and model training, and V1 and V2 were used for
independent holdout validation of prognostic model performance.
Dataset V2 was obtained for additional validation following the
experiments conducted using VT and V1. All datasets were approx-
imately class balanced between AA and CA patients. Patient race was
self-reported. VT and V1 were also approximately class balanced with
respect to patients who experienced BCR versus those who did not.
Selected demographic, clinical, and pathologic features of the entire
patient dataset are provided in Table 1. Patient features for each
dataset studied are presented in Supplementary Table S8.

VT (n ¼ 127) and V1 (n ¼ 62) consisted of samples collected at the
Hospital of the University of Pennsylvania (Philadelphia, PA). The
slides corresponding to these samples were scanned at 40� magni-
fication using an Aperio ScanscopeWhole-Slide Scanner (Leica) at the
Department of Pathology, University of Pennsylvania (Philadelphia,
PA). V2 consisted of samples collected at University Hospitals Cleve-
landMedical Center (UHCMC; n¼ 70) and at NewYork Presbyterian
Weill Cornell Medical Center (NYP, New York, NY; n¼ 75). Samples
prepared at UHCMC were scanned at 40� magnification on a Zeiss
Axio Scan.Z1 Slide Scanning Microscope (Zeiss). The samples pre-
pared at NYP were scanned at 40� magnification using an Aperio
Scanscope Whole-Slide Scanner (Leica) at the Department of Pathol-
ogy and Laboratory Medicine, Weill Cornell Medicine (New York,
NY). An example of a digitized H&E slide image is shown in Fig. 1A
and B.

All slides and patient records were gathered in accordance with
U.S. Common Rule guidelines in protocols approved by the insti-
tutional review board at the respective institution. The need for
written consent from participants was waived because of the use of
retrospective data.

Nuclear and stromal detection and segmentation
Nuclei and stroma were segmented using a previously developed

deep learning method based on convolutional neural networks (15).
The outputs of the deep learning models were confidence maps that
represented the probability that each pixel in the image was part of a
nucleus and that it belonged to the stroma (Fig. 1C and D). A
confidence threshold was determined by inspection of image data
fromVT and applied in conjunctionwithmaximumandminimumsize
thresholds to convert the confidence map to a binary matrix. Closed
shapes corresponding to nuclear or stromal borders were traced from
the binary maps to yield the final matrix of boundary coordinates.

Image feature calculation
Using the boundary coordinates of stromal nuclei and of the stromal

compartment (the output of the segmentation process), 242 quanti-
tative histomorphometric (QH) image features were calculated for
each patient. The extracted features included metrics derived from the

Translational Relevance

Mounting evidence suggests that there are molecular and
phenotypic differences in prostate cancer biology in African
Americans (AA) and Caucasian Americans (CA). However,
extant models for predicting outcome in prostate cancer (e.g.,
Kattan, Sharait, Swanson, and CAPRA-S nomograms) do not
consider population-specific differences in the disease pheno-
type. Most of these models were largely trained on non-AA
patients, and hence may not be appropriate for predicting
disease aggressiveness in AA patients. In this work, computer
vision and machine learning techniques were employed to
evaluate the capacity of quantitative measurements of the intra-
tumoral stroma computed from digitized H&E-stained slides
from radical prostatectomy specimens to predict recurrence risk
following surgery. Significant differences in stromal morphology
were observed in samples derived from AA versus CA patients,
and an AA-specific prognostic model was found to significantly
outperform population-agnostic models for AA patients. In
addition, stromal phenotypes identified as prognostic in AA
patients correlated with IHC measured tumor biomarkers. The
results of this study suggest that taking into account stromal
morphology and population-specific differences could lead to
more accurate risk stratification for AA patients with prostate
cancer post radical prostatectomy.
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stromal texture, the global and local connectivity graphs of stromal
nuclei, nuclear centroids, and descriptors of nuclear shape and ori-
entation (feature classes further described in Supplementary Table S2).

Visualizations of selected stromal image feature calculations are
shown in Supplementary Figure 1A–P for patients from each race
and BCR status combination.

IHC
We obtained IHC stain intensity H-scores for 10 biomarkers

relevant to prostate cancer progression for a total of 76 patients in
VT,AA and V1,AA combined. The biomarkers investigated were
TMPRSS2-ERG fusion, PTEN, PMSA, Racemase (AMACR), C-MYC,
AR, Ki-67, P-53, nuclear RB, and cytoplasmic RB. The mean IHC
H-scores and number of patients with nonzero scores for each marker
are provided in Supplementary Table S9.

Statistical methods and definitions
BRFS was measured from the date of surgery to the date of BCR,

which was defined as at least two PSA test results greater than 0.2
ng/mL. Patients who did not experience BCR were right censored at
the date of last follow-up in survival analyses.

Within each racial subset of VT (VT,AA, VT,CA, and VT,AAþCA), all
possible combinations of features were tested for correlation by
calculating the Pearson correlation coefficient (PCC). To remove
redundant features (i.e., features that were almost linearly dependent
upon one another), the feature with smaller absolute b value in a Cox
model for BRFS was removed from pairs of features that had PCC
greater than 0.90.

ENC models were built using a modified version of Glmnet for
MATLAB (16).
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Figure 1.

Dataset preparation, analysis, and prognosticmodel construction. Paraffin-embedded, resected prostate glandswere sectioned using amicrotome. H&E slideswere
then prepared and digitally scanned (A). For each slide, a single representative cancerous regionwas annotated on the digital image by a pathologist (green line in a,
magnified view inB). Stroma and nuclei were then segmented from the region of interest by deep learningmodels, yielding class probabilitymaps (C) and (D). These
probability maps were thresholded and used to compute stromal image features (E and F). Stromal morphology descriptors were used to train prognostic models
(G), which estimate biochemical recurrence risk score (H).

Table 1. Summary of clinicopathologic features of the whole
dataset.

Variables Subvariables
Fraction (%) or
mean (STD)

Number of patients Total 334
Training 127 (38%)
Validation 207 (62%)

Age in years 59.54 (7.15)
Race AA 170 (51%)

CA 164 (49%)
Preoperative PSA
(ng/mL)

Recurrence 10.95 (11.37)
Nonrecurrence 7.92 (11.52)

Pathologic Gleason
grade sum

6 or less 109 (33%)
7 197 (59%)
8 or greater 28 (8%)

Pathologic stage T2x 170 (51%)
T3x 94 (28%)
Data not available
(either T2x or T3x)

70 (21%)

Time to event (days) Recurrence 1,063 (1120)
Last follow-up
(nonrecurrence)

1,717 (1411)
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All statistical tests were two-sided, and were performed with the
significance level set at 0.05. All statistical and feature analyses were
conducted using MATLAB (The Mathworks, Inc.) and Python 3
(Python Software Foundation, https://www.python.org/).

Experiment 1: identification of stromal nuclear features
prognostic of BCR

The independent prognostic capability of each stromal image
feature with respect to BRFS was assessed in VT using univariable
Cox proportional hazards regression to determine which features
might be suitable for risk prognosis model construction. The classes
of features tested are described in Supplementary Table S5, and all the
features and their median values for each training subset are provided
in Supplementary Table S6. Cox proportional hazards regression
models were fit to each stromal feature within each population subset
(VT,AA, VT,CA, and VT,AAþCA) to assess the prognostic power of each
feature within each racial group.

Experiment 2: BCR prognosis model construction using stromal
image features

Random forest and ENCmodels were constructed to estimate BCR
risk using stromal image feature values. These models take a patient's
vector of image feature values as input, and output an estimate of the
recurrence risk for the patient.

Random forest (RF) classifiers were tested with input numbers of
features between 1 and 25 for optimal performance averaged over 10
iterations of 3-fold cross-validation in VT. The hyperparameters that
produced the highest statistically significant Cox proportional hazards
regression HR were identified for each training cohort (VT,AA, VT,CA,
and VT,AAþCA). Following model parameter optimization using the
training set, models were trained on the entire training set, locked
down, and tested against V1 and V2. For each validation experiment,
AUC values were calculated, Kaplan–Meier survival curves con-
structed, and univariable Cox proportional hazards regression applied
to determine HR and P value.

Elastic net-penalized Cox proportional hazards regression was
implemented to estimate BRFS time based on the quantitative histo-
morphometry features. These models were fit to the survival data. To
determine the optimal risk score threshold for stratifying high-
recurrence risk from low-recurrence risk patients, we used the fol-
lowing algorithm: (i) risk scores were calculated for each patient in the
training set using the ENCmodel. (ii) Risk scores between the 20th and
80th percentiles were retained as candidate thresholds. (iii) Each
candidate was tested as a threshold in the training set and log-rank
P values and HRs were calculated. (iv) Candidate thresholds with
statistically significant performance were retained, and the value
corresponding to the largest HR was selected. Following parameter
optimization and threshold determination, model parameters were
locked down and themodels were tested against the holdout validation
sets V1 and V2. Analysis of validation set performance was performed
using the same method as described for the ML models.

To assess the performance of the AA-specific, automated stromal
signature (AAstro) model relative to the clinical gold standard, two
postoperative recurrence risk prognosis nomograms were implemen-
ted: CAPRA-S and Kattan (17, 18). The Kattan nomogram was
implemented with the most up-to-date model parameters retrieved
from the Memorial Sloan-Kettering Cancer Center website (accessed
May 2019), and both nomograms were implemented with t ¼ 5-year
prediction targets. Classification models were created from the nomo-
grams by thresholding the nomogram output probabilities at a recur-
rence risk probability value of 0.5. In addition, Kaplan–Meier and Cox

proportional hazards analyses were performed on the output of these
nomogram-based classifiers for each cohort to evaluate the differences
in outcomes for the predicted low-risk and high-risk classes.

Experiment 3: comparison of AAstro with clinical variables and
nomograms

To determine whether AAstroENC was independent of clinical
variables, multivariable Cox proportional hazards models were fit
using the model score as well as clinical and pathologic variables. To
assess the performance of the AAstromodel relative to the clinical gold
standard, two postoperative recurrence risk prognosis nomograms
were implemented, CAPRA-S and Kattan (17, 18). We also performed
experiments to evaluate the performance of these nomograms for CA
patients.

Experiment 4: association of stromal morphology descriptors
with biomarker expression levels

To determine whether any stromal image features were associated
with the expression level of tumor biomarkers, PCC values and
associatedP valueswere calculated for each biomarker–stromal feature
pair. Statistically significant (P < 0.05) associations with PCC absolute
value greater than 0.4 were reported.

Results
Clinicopathologic features of the patient datasets

Clinical and pathologic features of the patient dataset are provided
in Table 1. The mean time to BCR was approximately 3 years, and the
mean to last follow-up overall was approximately 5 years. Patients in all
cohorts were about 60 years of age at the time of surgery. No
statistically significant differences in the distributions of clinical or
demographic features were found between the training and validation
datasets by Wilcoxon rank sum test.

Experiment 1: descriptors of stromalmorphology are associated
with biochemical recurrence

In dataset VT overall (VT,AAþCA), 15 uncorrelated (PCC < 0.90)
stromal image features were prognostic of BRFS based on Cox
proportional hazards regression analysis. These features included
quantitative descriptors of tissue texture, nuclear shape, and nuclear
arrangement. In the AA-only training cohort (VT,AA), six features
were significantly prognostic, and in the CA training cohort (VT,

CA), 22 were identified. Notably, while there were fewer prognostic
features in VT,AA, the AA-specific features exhibited more dramatic
hazard ratios than features identified in the other cohorts. In
addition, while significant features in VT,CA and VT,AAþCA consisted
of a mixture of feature types (descriptors of shape, orientation,
arrangement, and texture), those discovered in VT,AA were exclu-
sively shape and texture descriptors. All features with significantly
differing distributions between BCR and non-BCR patients of each
racial cohort are presented in Supplementary Table S6, with median
values for each group.

Experiment 2: a stromal morphologic signature (AAstro) is
prognostic of biochemical recurrence in AA patients

No ML or ENC model with any training set (VT,AA, VT,CA, or
VT,AAþCA) was prognostic of disease recurrence for CA or AAþCA
cohorts in more than one validation set (Supplementary Table S1).
However, random forest and ENCmodels trained onAApatients were
prognostic of recurrence risk for AA patients in both validation
datasets. For these patients, the ENC model fit using survival data
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outperformed theMLmodels trained on binary BCR/non-BCR labels.
The results of classification experiments for each training and vali-
dation cohort combination are presented in Supplementary Table S1,
and results for AA patients are displayed in Fig. 2A and B.

The best performing RF model for AA patients, AAstroML, was
trained on the top six stromal image features identified by univari-
able HR. These features were all descriptors of stromal nuclear
shape and stromal texture (specific features listed in Supplementary
Table S3). AAstroML achieved an AUC of 0.85 and HR of 3.03 [95%
confidence interval (CI), 0.812–11.3; P ¼ 0.024] in validation on V1,

AA, and an AUC of 0.75 and HR of 4.51 (95% CI, 0.925–22; P ¼
0.013) on V2,AA.

The best performing ENCmodel for AA patients, AAstroENC, was
trained on 10 descriptors of stromal morphology (listed in Supple-
mentary Table S3). The features selected were similar to those selected
by AAstroML, but also included two descriptors of nuclear arrange-
ment. AAstroENC achieved an AUC of 0.87 and HR of 4.71 (95% CI,
1.65–13.4; P¼ 0.0027) in V1,AA, and AUC of 0.77 and HR of 5.7 (95%
CI, 1.48–21.90; P¼ 0.014) in V2,AA, outperforming AAstroML in both
datasets.

Distributions of selected features used by the AAstro models are
visualized in Fig. 2D–F. Kaplan–Meier curves estimating the relative
survival of the estimated high- versus low-recurrence risk groups for
each classifier in each validation set are shown in Fig. 2A and B.
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Figure 2.

Classifier performance in validation datasets and distributions of features prognostic for AA patients. Kaplan–Meier survival curve estimates of predicted low- versus
high-BCR risk groups in V1,AA andV2,AA for AAstroENC (A), AAstroML (B), andKattan nomogram (C). Distributions inVT,AA of QHdescriptors of stromal nuclear shape
(min/max Fourier descriptor 4 and mean fractal dimension; D), texture (Haralick mean information measure 1 and mean contrast inverse moment; E), and nuclear
arrangement (COrE mean tensor correlation and subgraph number of isolated nodes; F) used by AAstro models.
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Experiment 3: AAstro signature is independent of clinical
variables and outperforms clinical nomograms for AA patients

In a multivariable Cox regression analysis, AAstroENC was prog-
nostic in both V1,AA and V2,AA independent of clinical and pathologic
variables used in existing risk estimation models (Table 2). The only
other variable retaining a significant HR in both validation datasets
when adjusting for other variables andAAstroENC score was presence
of seminal vesicle invasion (SVI).

AAstroENC and AAstroML outperformed clinical models in both
validation datasets. The only nomogram prognostic in an AA valida-
tion cohort was the Kattan nomogram in V1,AA. The HR achieved by
the Kattan nomogram was lower than that of AAstroENC. Perfor-
mance of models created using CAPRA-S and Kattan nomograms for
AA patients is provided in Supplementary Table S2, and equivalent
modeling conducted for CA patients in Supplementary Table S3.

Experiment 4: association of stromal morphology with tumor
biomarker expression

Twenty-nine pairs of IHC-derived biomarkers and stromal mor-
phology descriptors were identified as having significant association
with PCC > 0.4 or PCC < �0.4. Three of these pairs included stromal
morphology descriptors that were prognostic of BRFS in VT,AA. These
three pairs were between stromal nuclear shape mean fractal dimen-
sion with cytoplasmic RB (PCC¼ 0.606, P¼ 0.0005), stromal texture
Haralick mean information measure 1 with TMPRSS2-ERG fusion
protein (PCC¼�0.447, P¼ 0.033), and stromal nuclear shape mean
fractal dimension with AR expression (PCC ¼ 0.41, P ¼ 4.12e-4).
PTEN was found to be associated with 15 image features computed
from the stroma. All of these descriptors were measurements of
nuclear shape. PTENwas the marker associated with the most stromal
image features, being statistically correlated with 15 features. All of
these descriptors were measurements of nuclear shape. The QH
feature-biomarker pairing with the highest absolute PCC was the
association of PTENwithmean Fourier descriptor 4 of stromal nuclear
shape (PCC ¼ �0.623, P ¼ 7.56e-3).

The biomarkers studied are outlined in Fig. 3A, and selected pairs
with significant correlation are highlighted in Fig. 3B. Scatter plots

depicting the association of prognostic stromal image features with
biomarker expression values are presented in Fig. 3C–E. The full list of
pairs identified is presented in Supplementary Table S4.

Discussion
The goal of this work was to evaluate quantitative descriptors of

stromal morphology and population-specific tuning for post-radical
prostatectomy prognosis. We calculated quantitative descriptors of
stromal morphology from routine H&E slides, and found that stromal
morphology differs between AA and CA patients. Models created
using our stromal morphologic signature were found to be prognostic
for AA patients in two independent holdout validation datasets. These
models, AAstroML and AAstroENC, predicted risk independently of
routine clinical variables, and outperformed current clinical nomo-
grams in the AA validation set patients. Multiple stromal image
features were also associated with the expression level of tumor
biomarkers measured using IHC.

In our analysis, the stromal features most prognostic of risk in all
three cohorts (AA, CA, and AAþCA) were descriptors of stromal
texture, stromal nuclear shape, and stromal nuclear arrangement.
These features specifically included Fourier and invariant descriptors,
which measure the fundamental shape of the nuclear boundary. The
features selected by the model also included measures of nuclear
arrangement, which describe the relative nuclear spatial density, and
stromal texture. The distributions of these features in each cohort
appear to indicate that high-risk tumors have relatively higher levels of
intratumoral heterogeneity in stromal nuclear shape and arrangement
and stromal texture. Differences in stromal morphologic phenotypes
between AA and CA tumors are supported by other studies. Kinseth
and colleagues (19) found that the majority of genes with significant
expression differences between CA and AA men were associated with
the tumor-adjacent stroma. A number of these differentially expressed
genes were found to be involved with cell organization and structure,
including ECM regulation, cellular adhesion, and cytoskeleton
maintenance.

The prognostic utility of stromal features observed in this study
adds to a growing base of knowledge implicating tissue regions not
traditionally examined by pathologists as harboring prognostic
cues. In a study involving more than 6,000 image features derived
from breast cancer images, Beck and colleagues (20) identified
stromal image features as being more strongly prognostic of survival
compared with tumor epithelial features. Similarly, Lee and collea-
gues (14) showed that computer-extracted descriptors of nuclear
morphology, derived from benign, tumor-adjacent regions were
strongly associated with the likelihood of biochemical recurrence
post-surgery. Collectively, these findings reinforce the importance
of interrogating patterns within the stroma and tumor-adjacent
regions on histopathology.

The variations in cell and tissue phenotype measured by our
computer vision approach are the result of molecular pathways
invisible on H&E slides. While the precise molecular etiology of
prostate cancer is not fully understood, we hypothesized that the
image features used by ourAAstromodelsmight be associatedwith the
expression of biomarkers important to prostate cancer pathogenesis.
To investigate this hypothesis, we obtained IHC stains against 10 well-
characterized prostate cancer protein biomarkers (Fig. 3A). These
biomarkers included proteins involved in cellular metabolism, tumor
suppression, androgen signaling, and transcriptional regulation. We
tested the expression level of these biomarkers for association with our
stromal morphology descriptors.

Table 2. Multivariable Cox proportional hazards modeling of
AAstroENC model scores adjusting for clinical and pathologic
variables.

Dataset V1,AA (n ¼ 31) Dataset V2,AA (n ¼ 93)
Parameter HR (95% CI) P HR (95% CI) P

AAstroENC score 4.62 (1.31–16.23) 0.017 2.58 (1.38–4.83) 0.0029
Age at the time of
surgery

0.27 (0.091–0.82) 0.02 0.74 (0.32–1.69) 0.47

Gleason score ≤6 Reference 1.00 Reference 1.00
Gleason score¼ 7 1.89 (0.86–4.13) 0.11 0.68 (0.19–2.48) 0.57
Gleason score ≥8 1.09 (0.42–2.84) 0.85 1.07 (0.31–3.78) 0.91
Preoperative PSA
value

2.60 (1.11–6.10) 0.027 1.75 (0.82–3.74) 0.14

Presence of SVI 3.27 (1.21–8.86) 0.019 2.53 (1.20–5.33) 0.014
Presence of ECE 0.82 (0–infinity) 1.00 0.94 (0.23–3.76) 0.93
Positive surgical
margins

0.77 (0.30–1.92)) 0.57 1.18 (0.61–2.31) 0.62

Pathologic stage
pT2x

Reference 1.00 Reference 1.00

Pathologic stage
pT3x

0.62 (0–infinity) 1.00 1.36 (0.81–2.28) 1

Note: Predictors with significant P values in bold.
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This experiment revealed a strong association between stromal
nuclear shape (mean fractal dimension) and RB, a tumor suppressor
protein. Loss of RB is associated with a transition to incurable prostate
cancer (21). RB has been shown to control androgen receptor (AR)
expression: depletion of RB induces dysregulation of AR activity,
which is associated with therapeutic bypass and tumor progres-
sion (21). An association was also identified between stromal texture
(Haralick mean information measure 1) and TMPRSS2-ERG gene
fusion, a molecular aberration frequently observed in prostate cancer.
TMPRSS2-ERG expression level was negatively associated with recur-
rence-free survival (22). TMPRSS-ERG expression has also been
shown to be associated with specific stromal biomarkers (23). Associa-
tions were also identified between stromal nuclear shape (mean fractal
dimension) and the AR, a key element of the androgen signaling
system. Interestingly, AR signaling in the stroma has been shown to
influence tumor behavior: loss of stromal AR is related with substan-
tially increased risk (24). Finally, we identified an association between
15 image features of stromal nuclear shape and expression of PTEN, a
tumor suppressor protein. Loss of PTEN is the most common genetic
change in prostate cancer, and is associated with more aggressive
disease and castration resistance (25). Interestingly, loss of PTEN is
associated with specific adverse histologic features, including intra-

ductal carcinoma, cribriform Gleason pattern 4, and stromogenic
carcinoma (26).

These preliminary experiments support the existence of a connec-
tion between stromal architecture and tumor biochemistry. Notably,
previous work on these biomarkers has focused on the prostate cancer
epithelium, and our results suggest potential roles for these biomarkers
in the intratumoral stroma. It is also possible that stroma–epithelium
interactions, which have been implicated in tumorigenesis, mediate
both the morphologic and biochemical changes we observed.

This study did have some limitations. First, the size of the training
dataset was limited, especially given its division into AA and CA
subgroups. It is possible that with a larger training dataset, models
prognostic for CA patients could have been trained. In addition, some
patients in the study had relatively short follow-up durations. In
addition, BCR prognosis models trained on CA patients failed to
effectively stratify BCR risk in CA men. It is possible that the poor
model performance on the CA cohort was in part due to increased
diversity and/or genetic heterogeneity within this group (27, 28).

In spite of these limitations, this study is the first to show the role of
stromal features in prostate cancer BCR likelihood estimation, and is
the first QH study to assess population-specific differences in prostate
cancer. In addition, the findings of this study provide some biological
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Figure 3.

Association of stromal morphology descriptors with biomarker expression levels.A, Expression levels of selected prostate cancer tumor biomarkers were measured
using IHC. These values were tested for association with stromal image features calculated from H&E-stained images. Selected pairings of biomarkers and stromal
image features with significant correlation are shown in B, with prognostic stromal features highlighted in green. Scatter plot visualizations of correlation between
prognostic stromal features and biomarker expression levels are shown in C–E.
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insight into differences in prostate cancer morphology between AA
and CA patients. Future work will entail reproducing and validating
these findings in larger cohorts and studying stromal features in the
context of features from additional tissue compartments.
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